(a) The diagram shows a figure \( O A B C \), where \( \overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b} \) and \( \overrightarrow{O C}=\mathbf{c} \).
The lines \( A C \) and \( O B \) intersect at the point \( M \) where \( M \) is the midpoint of the line \( A C \).
(i) Find, in terms of a and \( \mathbf{c} \), the vector \( \overrightarrow{O M} \).
(ii) Given that \( O M: M B=2: 3 \), find \( \mathbf{b} \) in terms of \( \mathbf{a} \) and \( \mathbf{c} \).
(b) Vectors \( \mathbf{i} \) and \( \mathbf{j} \) are unit vectors parallel to the \( x \)-axis and \( y \)-axis respectively.
The vector \( \mathbf{p} \) has a magnitude of 39 units and has the same direction as \( -10 \mathbf{i}+24 \mathbf{j} \).
(i) Find \( \mathbf{p} \) in terms of \( \mathbf{i} \) and \( \mathbf{j} \).
(ii) Find the vector \( \mathbf{q} \) such that \( 2 \mathbf{p}+\mathbf{q} \) is parallel to the positive \( y \)-axis and has a magnitude of 12 units.
(iii) Hence show that \( |\mathbf{q}|=k \sqrt{5} \), where \( k \) is an integer to be found.
\( \mathbf{a)} \)
\( (i) \)
\( \overrightarrow{OM} = \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AC} = \overrightarrow{OA} + \frac{1}{2} (\overrightarrow{OC} - \overrightarrow{OA}) \)
\( = a + \frac{1}{2} (c - a) = \frac{1}{2} a + \frac{1}{2} c \)
\( (ii) \)
\( b = \frac{5}{2} \overrightarrow{OM} = \frac{5}{2} \left( \frac{1}{2} a + \frac{1}{2} c \right) = \frac{5}{4} a + \frac{5}{4} c \)
\( (ii) \)
\( 2p + q \) is parallel to the y-axis, so \( i \) component is zero.
Since \( 2p + q \) has a magnitude of 12, then \( 2p + q = 0i + 12j \)
\( 2(-15i + 36j) + xi + yj = 0i + 12j \)
\( -30i + x i = 0 \) and \( 72j + y j = 12 \)
\( x = 30 \) and \( y = -60 \)
\( q = 30i - 60j \)
(a) Given that \( \mathbf{p}=2 \mathbf{i}-5 \mathbf{j} \) and \( \mathbf{q}=\mathbf{i}-3 \mathbf{j} \), find the unit vector in the direction of \( 3 \mathbf{p}-4 \mathbf{q} \).
Vectors \( \mathbf{a}, \mathbf{b} \) and \( \mathbf{c} \) are such that \( \mathbf{a}=\binom{2}{y}, \mathbf{b}=\binom{1}{3} \) and \( \mathbf{c}=\binom{-5}{5} \).
(i) Given that \( |\mathbf{a}|=|\mathbf{b}-\mathbf{c}| \), find the possible values of \( y \).
(ii) Given that \( \mu(\mathbf{b}+\mathbf{c})+4(\mathbf{b}-\mathbf{c})=\lambda(2 \mathbf{b}-\mathbf{c}) \), find the value of \( \mu \) and of \( \lambda \).
Vectors \( \mathbf{i} \) and \( \mathbf{j} \) are unit vectors parallel to the \( x \)-axis and \( y \)-axis respectively.
(a) The vector \( \mathbf{v} \) has a magnitude of \( 3 \sqrt{5} \) units and has the same direction as \( \mathbf{i}-2 \mathbf{j} \). Find \( \mathbf{v} \) giving your answer in the form \( a \mathbf{i}+b \mathbf{j} \), where \( a \) and \( b \) are integers.
(b) The velocity vector \( \mathbf{w} \) makes an angle of \( 30^{\circ} \) with the positive \( x \)-axis and is such that \( |\mathbf{w}|=2 \) Find \( \mathbf{w} \) giving your answer in the form \( \sqrt{c} \mathbf{i}+d \mathbf{j} \), where \( c \) and \( d \) are integers.
(a) The given direction of vector \( \mathbf{v} \) is \( \mathbf{i} - 2 \mathbf{j} \).
The magnitude of \( \mathbf{i} - 2 \mathbf{j} \) is:
\( \sqrt{1^2 + (-2)^2} = \sqrt{5} \).
The unit vector in this direction is:
\( \frac{1}{\sqrt{5}} (\mathbf{i} - 2 \mathbf{j}) \).
Given that \( |\mathbf{v}| = 3\sqrt{5} \), we find \( \mathbf{v} \):
\( \mathbf{v} = 3\sqrt{5} \times \frac{1}{\sqrt{5}} (\mathbf{i} - 2 \mathbf{j}) = 3 \mathbf{i} - 6 \mathbf{j} \).
(b) The velocity vector \( \mathbf{w} \) makes an angle of \( 30^\circ \) with the positive \( x \)-axis and has magnitude \( 2 \).
Using trigonometric components:
\( \mathbf{w} = |\mathbf{w}| (\cos 30^\circ \mathbf{i} + \sin 30^\circ \mathbf{j}) \).
\( = 2 \left( \frac{\sqrt{3}}{2} \mathbf{i} + \frac{1}{2} \mathbf{j} \right) \).
\( = \sqrt{3} \mathbf{i} + 1 \mathbf{j} \).
5
June 2020 p12 q8
The diagram shows a triangle \( O A B \) such that \( \overrightarrow{O A}=\mathbf{a} \) and \( \overrightarrow{O B}=\mathbf{b} \). The point \( P \) lies on \( O A \) such that \( O P=\frac{3}{4} O A \). The point \( Q \) is the mid-point of \( A B \). The lines \( O B \) and \( P Q \) are extended to meet at the point \( R \). Find, in terms of \( \mathbf{a} \) and \( \mathbf{b} \)
(a) \( \overrightarrow{A B} \)
(b) \( \overrightarrow{P Q} \). Give your answer in its simplest form.
(c) Find \( \overrightarrow{Q R} \) in terms of \( n \), \( \mathbf{a} \) and \( \mathbf{b} \)
(d) Find \( \overrightarrow{Q R} \) in terms of \( k \), \( \mathbf{a} \) and \( \mathbf{b} \)
(e) Hence find the value of \( n \) and of \( k \).
(a) The vector \( \overrightarrow{A B} \) is given by:
\( \overrightarrow{A B} = \overrightarrow{O B} - \overrightarrow{O A} \).
\( = \mathbf{b} - \mathbf{a} \).
(b) The point \( P \) lies on \( O A \) such that \( O P = \frac{3}{4} O A \), so:
\( \overrightarrow{O P} = \frac{3}{4} \mathbf{a} \).
The point \( Q \) is the mid-point of \( A B \), so:
\( \overrightarrow{O Q} = \frac{1}{2} (\overrightarrow{O A} + \overrightarrow{O B}) = \frac{1}{2} (\mathbf{a} + \mathbf{b}) \).
The vector \( \overrightarrow{P Q} \) is:
\( \overrightarrow{P Q} = \overrightarrow{O Q} - \overrightarrow{O P} \).
\( = \frac{1}{2} (\mathbf{a} + \mathbf{b}) - \frac{3}{4} \mathbf{a} \).
\( = \frac{1}{2} \mathbf{a} + \frac{1}{2} \mathbf{b} - \frac{3}{4} \mathbf{a} \).
\( = \left( \frac{1}{2} - \frac{3}{4} \right) \mathbf{a} + \frac{1}{2} \mathbf{b} \).
\( = -\frac{1}{4} \mathbf{a} + \frac{1}{2} \mathbf{b} \).
(c) Given that \( n \overrightarrow{P Q} = \overrightarrow{Q R} \), we substitute \( \overrightarrow{P Q} \):
\( \overrightarrow{Q R} = n \left(-\frac{1}{4} \mathbf{a} + \frac{1}{2} \mathbf{b} \right) \).
\( = -\frac{n}{4} \mathbf{a} + \frac{n}{2} \mathbf{b} \).
(d) Given that \( \overrightarrow{B R} = k \mathbf{b} \), and using \( \overrightarrow{Q R} = \overrightarrow{B R} + \overrightarrow{Q B} \):
Since \( Q \) is the midpoint of \( A B \), we have \( \overrightarrow{Q B} = \frac{1}{2} \overrightarrow{A B} = \frac{1}{2} (\mathbf{b} - \mathbf{a}) \).
\( \overrightarrow{Q R} = k \mathbf{b} + \frac{1}{2} (\mathbf{b} - \mathbf{a}) \).
\( = k \mathbf{b} + \frac{1}{2} \mathbf{b} - \frac{1}{2} \mathbf{a} \).
\( = -\frac{1}{2} \mathbf{a} + \left( k + \frac{1}{2} \right) \mathbf{b} \).
(e)
\( \frac{1}{2} (\mathbf{b} - \mathbf{a}) + k \mathbf{b} = n \left( \frac{1}{2} \mathbf{b} - \frac{1}{4} \mathbf{a} \right) \)
\( -\frac{1}{2} = -\frac{n}{4} \)
\( \frac{1}{2} + k = \frac{n}{2} \)
\( n = 2 \)
\( k = \frac{1}{2} \)